cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

Madsen L; Pedersen LM; Liaset B; Ma T; Petersen RK; van den Berg S; Pan J; Müller-Decker K; Dülsner ED; Kleemann R; Kooistra T; Døskeland SO; Kristiansen K

Abstract: The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti-adipogenic action of n-6 PUFAs was dependent on a cAMP-dependent protein kinase-mediated induction of cyclooxygenase expression and activity. We show that n-6 PUFAs were pro-adipogenic when combined with a high carbohydrate diet, but non-adipogenic when combined with a high protein diet in mice. The high protein diet increased the glucagon/insulin ratio, leading to elevated cAMP-dependent signaling and induction of cyclooxygenase-mediated prostaglandin synthesis. Mice fed the high protein diet had a markedly lower feed efficiency than mice fed the high carbohydrate diet. Yet, oxygen consumption and apparent heat production were similar. Mice on a high protein diet had increased hepatic expression of PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha) and genes involved in energy-demanding processes like urea synthesis and gluconeogenesis. We conclude that cAMP signaling is pivotal in  regulating the adipogenic effect of n-6 PUFAs and that diet-induced differences in cAMP levels may explain the ability of n-6 PUFAs to either enhance or counteract adipogenesis and obesity.

DANORC is supported by the
The Danish Council for Strategic Research
Institute of Preventive Medicine
Frederiksberg Hospital
Nordre Fasanvej 57
2000 Frederiksberg
Tel.: +45 38163025